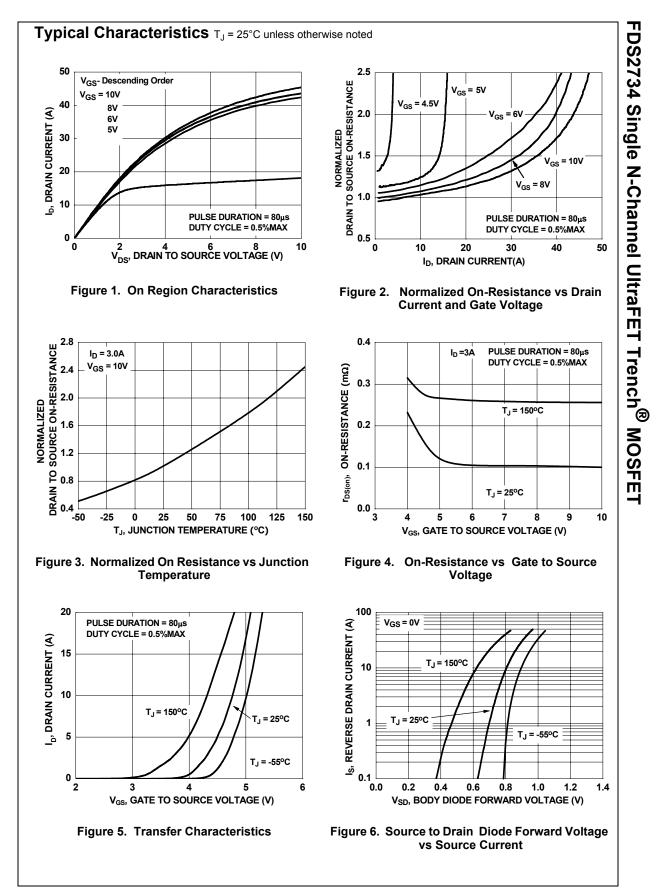


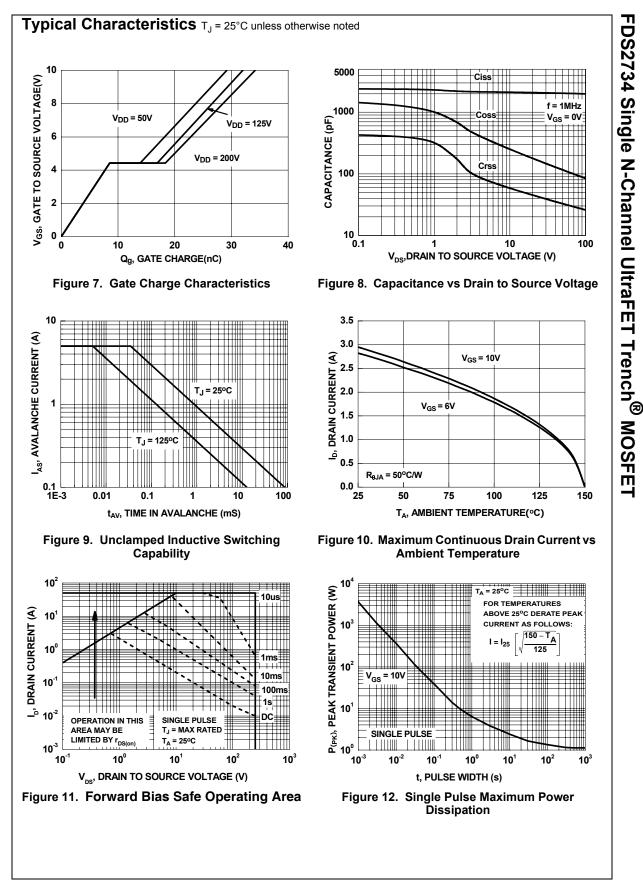
MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

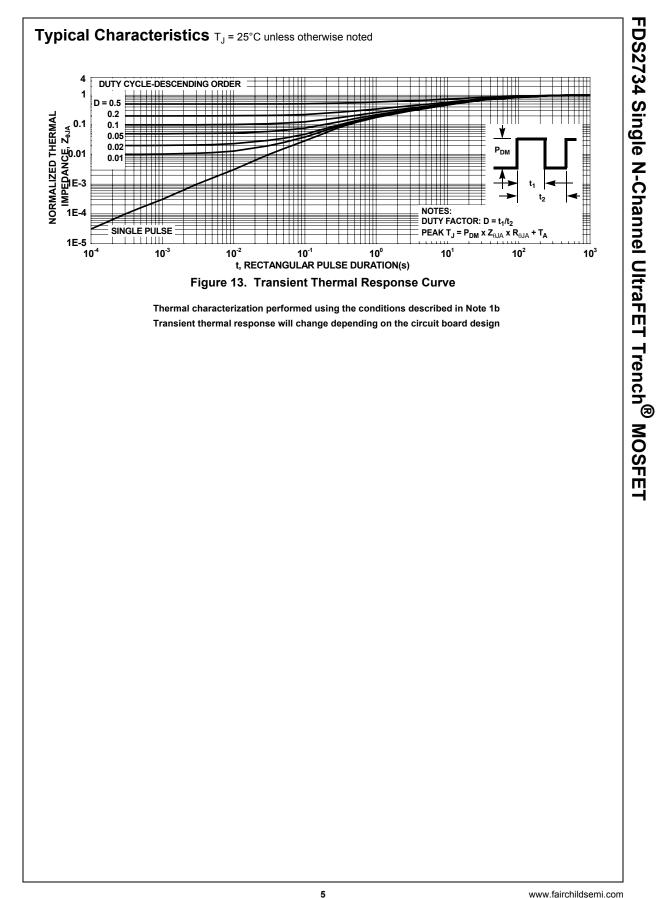
Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage		250	V	
V _{GS}	Gate to Source Voltage		±20	V	
-	Drain Current -Continuous	(Note 1a)	3.0	٨	
D	-Pulsed		50	— A	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	12.5	mJ	
n	Power dissipation	(Note 1a)	2.5	w	
P _D	Power dissipation	(Note 1b)	1.0	~ ~ ~	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to 150	°C	

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction- to -Ambient	(Note 1a)	50	
$R_{\theta JA}$	Thermal Resistance, Junction- to- Ambient	(Note 1b)	125	°C/W
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction -to- Case	(Note 1)	25	


Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDS2734	FDS2734	SO-8	13"	12mm	2500 units


FDS2734 Single N-Channel UltraFET Trench[®] MOSFET

Off Charac BV _{DSS} ∆BV _{DSS}	Parameter	Test Conditions	Min	Тур	Max	Units
BV _{DSS}	teristics					
∆BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	250			V
ΔT_{J}	Breakdown Voltage Temperature Coefficient	$I_D = 250\mu$ A, referenced to 25° C		157		mV/ºC
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 200V, V_{GS} = 0 V$ $V_{DS} = 200V, V_{GS} = 0V$ $T_{J} = 55^{\circ}C$			1 10	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20V, V _{DS} =0 V			±100	nA
On Charac	teristics (Note 2)			•		
	, <i>,</i>		2	2	4	V
$V_{GS(th)}$ $\Delta V_{GS(th)}$	Gate to Source Threshold Voltage Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250\mu A$ $I_D = 250\mu A$, referenced to $25^{\circ}C$	2	3 -10.7	4	V mV/ ^c
ΔT_{J}	Temperature Coefficient	V _{GS} = 10V, I _D = 3.0A,		97	117	
(DC(cr))	Drain to Source On Resistance	$V_{GS} = 10V, I_D = 3.0A,$ $V_{GS} = 6V, I_D = 2.8A,$		101	126	mΩ
r _{DS(on)}		$V_{GS} = 10V, I_D = 3.0A, T_J = 125^{\circ}C$		205	225	
9 _{FS}	Forward Transconductance	$V_{\rm DS}$ =10V, I _D =3.0A,		15.1		s
	Characteristics			1	1	1
C _{iss}	Input Capacitance			1960	2610	pF
C _{oss}	Output Capacitance	$-V_{DS} = 100V, V_{GS} = 0V,$		85	130	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		26	40	pF
R _G	Gate Resistance	f = 1MHz		0.7		Ω
t _{d(on)} t _r t _{d(off)} t _f	Rise Time Turn-Off Delay Time Fall Time	$V_{DD} = 125V, I_D = 3A$ $V_{GS} = 10V, R_{GS} = 6\Omega$		11 40 11	19 64 19	ns ns ns
Qg	Total Gate Charge	V _{DS} = 125V, V _{GS} = 10V		32	45	nC
Q _{gs}	Gate to Source Gate Charge	$I_D = 3.0A$		9		nC
Q _{gd}	Gate to Drain Charge			8		nC
	rce Diode Characteristics					
V _{SD}	Source to Drain Diode Voltage	I _{SD} = 3.0A		0.74	1.2	V
t _{rr}	Reverse Recovery Time	I _F = 3.0 A, d _{iF} /dt = 100A/μs		72	108	ns
Q _{rr}	Reverse Recovery Charge			185	278	nC

FDS2734 Single N-Channel UltraFET Trench[®] MOSFET

FDS2734 Rev. B

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FACT Quiet Series™ ActiveArray™ GlobalOptoisolator™ GTO™ Bottomless™ Build it Now™ HiSeC™ CoolFET™ I²C[™] i-Lo™ CROSSVOLT™ DOME™ ImpliedDisconnect[™] EcoSPARK™ IntelliMAX™ E²CMOS™ ISOPLANAR™ EnSigna™ LittleFET™ FACT™ MICROCOUPLER™ $\mathsf{FAST}^{\mathbb{R}}$ MicroFET™ FASTr™ MicroPak™ FPS™ MICROWIRE™ FRFET™ MSX™ MSXPro™ Across the board. Around the world.™

 OCX^{TM} S $OCXPro^{TM}$ S $OCXPro^{TM}$ S $OPTOLOGIC^{\textcircled{B}}$ S $OPTOPLANAR^{TM}$ S $PACMAN^{TM}$ S POP^{TM} S $Power247^{TM}$ S $PowerEdge^{TM}$ S $PowerSaver^{TM}$ S $PowerSaver^{TM}$ S $PowerSaver^{TM}$ S $QFET^{\textcircled{B}}$ T $QTOptoelectronics^{TM}$ T $Quiet Series^{TM}$ T $RapidConfigure^{TM}$ T $RapidConnect^{TM}$ T $ScalarPump^{TM}$ L

SILENT SWITCHER[®] SMART START[™] SPM[™] Stealth[™] SuperFET[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TCM[™] TinyBoost[™] TinyBoost[™] TinyBuck[™] TinyPWM[™] TinyPWM[™] TinyPWM[™] TinyPower[™] TinyLogic[®] TINYOPTO[™] TruTranslation[™] UHC[™] UniFET™ UltraFET[®] VCX™ Wire™

PowerTrench [®]	TCM™
QFET [®]	TinyBoost™
QS™	TinyBuck™
QT Optoelectronics™	TinyPWM™
Quiet Series™	TinyPower™
RapidConfigure™	TinyLogic [®]
RapidConnect™	TINYOPTO™
µSerDes™	TruTranslation™
ScalarPump™	UHC™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

The Power Franchise[®] Programmable Active Droop[™]

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

PRODUCT STATUS DEFINITIONS Definition of Terms